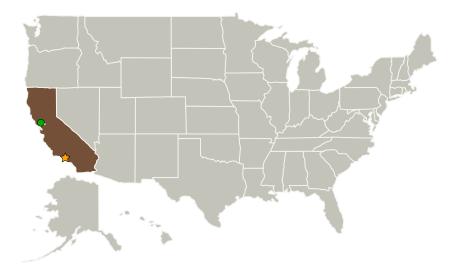
Center Innovation Fund: JPL CIF

Deep Network Radiative Transfer: A Revolution in Imaging Spectrometer Atmospheric Correction

Completed Technology Project (2017 - 2019)


Project Introduction

Enables accurate Maximum A Posteriori inversion. Leverages full spectral information to estimate smooth perturbation from scattering, coupled BRDF. Trained "forward model" captures rigorous physics interpretation of underlying RTM.

Anticipated Benefits

Visible Shortwave Infrared (VSWIR) atmospheric correction is key for global terrestrial & aquatic ecosystem studies. Capability need: 2 order of magnitude speedup. 0.1 seconds per iteration enables accurate iterative numerical inversion. Potential applications include: • Atmospheric correction for airborne VSWIR spectrometers (AVIRIS-NG, AVIRIS-C, ACIS, and future instruments). • Orbital VSWIR spectrometers (EMIT, SBG) • Extensible to water column modeling for ocean color, inland water quality, and coastal ecosystem studies (PRISM, CORAL, PACE, EV-S proposals) • Extensible to thermal IR for HyTES and longwave IR imaging spectrometers for Earth and planetary

Primary U.S. Work Locations and Key Partners

Deep Network Radiative Transfer: A Revolution in Imaging Spectrometer Atmospheric Correction

Table of Contents

Project Introduction	1	
Anticipated Benefits		
Primary U.S. Work Locations		
and Key Partners	1	
Project Transitions	2	
Project Website:	2	
Organizational Responsibility	2	
Project Management	2	
Technology Maturity (TRL)	2	
Technology Areas	3	
Target Destinations	3	

Center Innovation Fund: JPL CIF

Deep Network Radiative Transfer: A Revolution in Imaging Spectrometer Atmospheric Correction

Completed Technology Project (2017 - 2019)

Organizations Performing Work	Role	Туре	Location
	Lead Organization	NASA Center	Pasadena, California
Ames Research Center(ARC)	Supporting Organization	NASA Center	Moffett Field, California
Universities Space Research Association(USRA)	Supporting Organization	R&D Center	Huntsville, Alabama
University of Massachusetts- Amherst(UMASS)	Supporting Organization	Academia	Amherst, Massachusetts

Primary U.S. Work Locations

California

Project Transitions

October 2017: Project Start

September 2019: Closed out

Closeout Summary: Atmospheric Radiative Transfer Models (RTMs) are computationally-complex simulations of photon transport in the atmosphere which are critical for estimating spectroscopic surface properties remotely from air and space platforms. They will be important for imaging spectrometer missions slated to fly in the early 2020s (e.g. NASA's EMIT mission) and investigations planned for later in the decade (e.g. the Surface Biology and Geology Decadal Observable). However, such instruments produce data volumes that are not currently possible to analyze using our most accurate RTMs due to the extreme computational expense. This project uses machine learning strategies to provide multiple orders-of-magnitude improvements in RTM speed at negligible loss in accuracy while retaining the physical interpretability of the underlying physics-based model. We trained a neural network to emulate the physics-based solution over a relevant range of atmospheric conditions and observation geometries. This enables enhanced retrievals of surface properties under challenging atmospheric distortions.

Project Website:

https://www.nasa.gov/directorates/spacetech/innovation fund/index.html#.VC

Tech®Port Printed on 12/08/2022 05:02 PM UTC

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Jet Propulsion Laboratory (JPL)

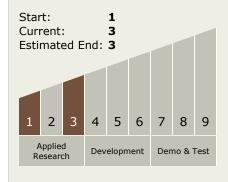
Responsible Program:

Center Innovation Fund: JPL CIF

Project Management

Program Director:

Michael R Lapointe


Program Manager:

Fred Y Hadaegh

Principal Investigator:

David W Thompson

Technology Maturity (TRL)

Center Innovation Fund: JPL CIF

Deep Network Radiative Transfer: A Revolution in Imaging Spectrometer Atmospheric Correction

Completed Technology Project (2017 - 2019)

Technology Areas

Primary:

- TX05 Communications, Navigation, and Orbital Debris Tracking and Characterization Systems
 - └ TX05.1 Optical Communications
 - ☐ TX05.1.5 Atmospheric Mitigation

Target Destinations

Earth, Others Inside the Solar System, Outside the Solar System

